

Bilkent University

Senior Design Project

craftual: a 3D model viewer and an asset management, presentation-based

cloud platform

Low Level Design Report
Authors: Endri Suknaj, Çağrı Orhan, Deniz Doğanay, Doruk Altan, Sencer Umut Balkan

Supervisor:

● Prof. Ibrahim Korpeoglu

Innovation Expert:

● Yeliz Yigit

08 January 2020
This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.

1

Table of Content
1. Introduction 3

1.1 Object design trade-offs 3
1.1.1 Response Time vs. Space 3
1.1.2 Usability vs. Functionality 4
1.1.3 Security vs. Cost 4

1.2 Interface documentation guidelines 4
1.3 Engineering standards 4
1.4 Definitions, acronyms, and abbreviations 4

2. Packages 6
2.1 Client 6

2.1.1 View 6
2.1.2 Redux 7

2.2 Server 8
2.3 Data 8

3. Class Interfaces 9
3.1 Client 9

3.1.1 View 9
3.1.2 Redux 15

3.2 Server 19

4. Glossary 21

5. References 21

2

1. Introduction
Presentations are an important part of work life that help people explain ideas, concepts and topics

either for educational purposes or for other work related purposes. A survey conveyed with people

working on different areas showed that 92% of the employees believed that presentation skills are

critical for success at work. Yet 75% of adults are estimated to be affected by public speaking

hindering their ability to be successful.[1] Aiming to help people affected by this condition we

thought of ways to reduce their fear by boosting their confidence. The best tool to do this is to help

people create a more unique and well-designed presentation. Research showed that 91% of

people felt more confident during presentations when they were presenting with a well-designed

slide deck.[2] The traditional presentation is made using Microsoft Powerpoint and consists of text

and usually stock images. However, an estimated 79% of employees find these presentations

boring and they claim that they often lose their concentration after the first 10 min. A novel

approach that would increase the interest of people on these presentations is using 3D

presentations in combination with AR technology. This technology could be used on the creative

stage as well as the presentation of the final product. The interactive interface would allow the

user to observe how small changes would affect the overall design of the product since all the

components are in the appropriate ratios. Being able to easily see how minor or major changes

influence the final product is a huge benefit regarding efficiency as it will prevent costly adjustments

that were not foreseen. Easy remodelling and editing makes more accurate designs which means

less cost and time invested. The 3D product presentation would offer a much more vivid depiction

of the product that a 2D presentation could ever depict.

1.1 Object design trade-offs

1.1.1 Response Time vs. Space
 The trade off between time and space is very common in systems that deal with high amounts of
data. Craftual will store a lot of data including models, presentations, comments, personal
information and more. The bulk of the data is stored on server time to provide efficient access even
when there is high amounts of data stored. Furthermore, caching and database optimization
techniques are applied to produce fast data inquiries as the most time consuming functionalities lie
in the database operations.

3

1.1.2 Usability vs. Functionality
This trade off is approached in different ways regarding the two main functions of craftual which
are model viewing and presentation creation. Aside from a couple of requests to the database,
viewing a model requires very little functionality but an easy to understand interface, therefore the
emphasis will be on usability.

On the other hand, when we consider making a presentation, the processes require more
modification on data and more requests from the back-end. For this reason, functionality is
prioritized over usability.

1.1.3 Security vs. Cost

Craftual stores sensitive data on every user such as personal information or intellectual property.
One important concern of our project is to keep such information as safe as possible. Main
precaution against any leak or theft of such data is using encrypted databases. As database gets
bigger, the cost increases with the added labour and time requirements to deal with both the
privacy and space management.

1.2 Interface documentation guidelines

All interface documentation is done according to UML design principles and the naming of every
class, method and variable will be under camel case conventions. The description of classes will
start with the class name, followed by the related attributes and methods. A sample outline is given
below.

1.3 Engineering standards

UML design principles are used for the visualization of use cases, interfaces, scenarios, class
diagrams and subsystem decompositions [3]. This way, we were able to represent the system
structure in an object oriented manner.

1.4 Definitions, acronyms, and abbreviations

AR Augmented Reality

VR Virtual Reality

4

Class Name The name of the class

Class Description Concise description of class

Attributes The set of attributes in the class

Methods The set of methods that can be performed

GUI Graphical User Interface

UML Unified Modelling Language

XSS Cross Site Scripting

DBM Database Management

API Application Programming Interface

I/O Input/Output

HTTP Hypertext Transfer Protocol

DAC Discretionary Access Control

MAC Mandatory Access Control

5

2. Packages

2.1 Client

2.1.1 View

● Redux Provider: This component will encapsulate the all the presentation layer

components and containers and will be used to make the redux store available the entire
app.

● Login Container: This is the component that will control the view of the Login Page. This
component will have two child components: the login component and the register
component.

● Login Component: This component will control the view of the login component. After the
user enter the credentials, they will be dispatched to the redux reducer to manage the login
operation.

● Register Component: This component will control the view of the register component. A
new user will be prompted to fill a form and that data will be dispatched to the redux reducer
to proceed with the registration of the user.

● Settings Container: This component will control the view of the settings page. This
component will have a child component named Settings Component.

● Settings Component: This component will display and allow the user to change some of
his profile data such as his username, email, password, image etc.

6

● Profile Container: This component will control the view of the profile page. This
component will have various child components such as Info Component, Display Model
Component, Browse Component, Upload Component, Create Presentation Component.

● Info Component: This component will be able to display some general information about
the user on the Profile Page.

● Display Model Component: This component will be able to display a model and its
information when a user clicks on a model.

● Browse Component: This component will display publicly available models and
presentations.

● Upload Component: This component will display the form that is filled when a user is
uploading a model to their account.

● Create Presentation Component: This component will display the screen and necessary
tool required to make a presentation from a basic model.

● Explore Container: This component will display the screen that shows all the publicly
available models and presentations. This component will have a child component named
Featured Component.

● Featured Component: This component will display the featured or the most viewed and
liked models and presentations.

2.1.2 Redux

● Redux Store: This component will contain the state of the app and will be updated using

the various reducers.
● Reducers: This reducer will be used to combine all reducers into one, so that we can

generate a single store.
● Authentication Reducer: This reducer will be used to authenticate or logg out the user

based on the actions that it receives.
● Profile Reducer: This reducer will control and update the state with regard to the profile

component, based on the actions that are dispatched from this component.
● Settings Reducer: This reducers will control an update the state with regard to the settings

component, based on the actions that are dispatched from that component.

7

● Presentation Reducer: This reducer will control and update the state with regard to the
presentation component, based on the actions that are dispatched from that component.

● Actions: This component will define all the actions that enable the reducers to change the
state of the application.

2.2 Server

● server: Server layer that manages application logic and wrapper on persistent data.

● server.item: Model feed provider.

● server.cache: Manages in-memory caching of persistent data.

● server.facebook: Manages Facebook authentication and publishing.

● server.models: Data transport objects, summarized models for “model”

package.

● server.oauth2: OAuth2 open authentication server provider implementation

● server.resizer: Image resizer service.

● server.storage: Cloud storage uploader and wrapper for picture files.

● server.twitter: Twitter authentication and publishing functionality

● server.modelviewer: 3D asset viewer service.

2.3 Data

8

3. Class Interfaces

3.1 Client

3.1.1 View

9

Redux Provider

Attributes

store This attribute contains the state of the entire
app. This attribute is accessible over the entire
app.

Methods

LoginContainer

Attributes

store The store contains the state of the entire app
and is accessed through the Redux Provider.

Methods

handleLogin() This method is called after the user enters their
credentials to login in. This method dispatches
a Set Session action if the credentials are
valid.

handleRegister() This method is called when the user enters the
required information for a registration and
dispatches a Register User action.

LoginComponent

Attributes

email The email entered by the user.

password The password entered by the user.

Methods

alert_emptyEmail() This method displays an alert if the user clicks

10

Login without entering the email information.

alert_emptyPassword() This method displays an alert if the user clicks
Login without entering the password.

sanitizeInput(email, password) This method is used to check whether the
credentials entered by the user are correct. If
they are then they call the handleLogin()
methods which is passed down by its parent
component, LoginContainer.

RegisterComponent

Attributes

name The name of the user entered in the
Registration Form.

email The email of the new user entered in the
Registration Form.

password The password of the new user entered in the
Registration Form.

Methods

alert_emptyEmail() This method displays an alert if the user clicks
Register without entering the email information.

alert_emptyPassword() This method displays an alert if the user clicks
Register without entering the email information.

sanitizeInput(email, password)

db_regUser() This method is called when the user presses
on the button Register. This method is taken
as a prop from its parent component,
LoginContainer.

SettingsContainer

Attributes

store The store contains the state of the entire app
and is accessed through the Redux Provider.

Methods

handleMode() This method is used to update the settings of
the app.

handlePasswordChange() This method is used to change password of
the user. When the user enters a new
password, the Set Profile Data action is

11

dispatched with the new data.

SettingsInfoComponent

Attributes

name The name of the user that is logged in.

email The password of the user that is logged in.

Methods

changeMode() This method call the handleMode() method
that is passed down from its parent
component, SettingsContainer

changePassword(String) This method calls the
handlePasswordChange() method that is
passed down from its parent component,
SettingsContainer.

ProfileContainer

Attributes

store The store contains the state of the entire app
and is accessed through the Redux Provider.

Methods

handleUpload() This method is called when the user clicks on
the Upload button to upload a model or
presentation to their account. This method
dispatches a Set Model Data or Set
Presentation Data action based on the type of
the object that is being uploaded.

handleDownloads() This method is called when the user clicks on
the Download button and downloads the
selected models/presentations to the users
device.

handleShares() This method is called when the user wants to
make one of their model publicly available.
This method dispatches a Set Model Data or
Set Presentation Data action, based on the
type of the object that is being shared.

handleCreatePresentation() This method is called when the user clicks on
Save button after they have been working on a
presentation. This method dispatches Set

12

Presentation Data action.

InfoComponent

Attributes

name The name of the user that is logged in.

username The username of the user that is logged in.

picture The profile picture of the user that is logged in.

uploads The Models uploaded by the user.

presentation The presentations available on the users
account.

Methods

BrowseComponent

Attributes

category The user can choose a category to filter the
available models.

archive This attribute holds the models archived by the
user.

ModelList[] This attribute contains a list of the available
Models.

Methods

getModels() This method return all the publicly available
models.

getModelById() This method returns a single model selected
by the user.

searchModel() This method filters the displayed models by the
selected category.

UploadComponent

Attributes

13

Obj file The type of the file that is being uploaded.

title The title of the object being uploaded.

license The type of the license of the object being
uploaded.

visibility Option to make the object publicly available or
private.

description Description of the object being uploaded.

tags The tags of the object being uploaded.

Methods

handleModelUpload() This method is called when the user clicks on
the Upload button. This method calls the
handleUpload() methods that is passed down
from its parent component, profileContainer.

CreatePresentation

Attributes

List<Models> This attribute is a list of models that are being
used in the presentation.

List<keyframes> This attribute is a list of keyframes of the
models in different positions.

Methods

handleCreatePresentation() This method is called when the user clicks on
Create Presentation button. This method calls
handleCreatePresentation() method that is
passed down by its parent component,
ProfileContainer.

DisplayModelComponent

Attributes

title The title of the Model that is being displayed.

description The description of the Model that is being
displayed.

tags The Tags of the Model that is being displayed.

14

views The number of view of the Model that is being
displayed.

likes The number of likes of the Model that is being
displayed.

comments The comments of the Model that is being
displayed.

Methods

handleDownload() This method is called when the user clicks on
the Download button. This method calls the
handleDownloads() method that is passed
down from its parent component,
ProfileContainer.

handleShare() This method is called when the user clicks on
Share button. This method calls the
handleShares() method that is passed down by
its parent component, ProfileContainer.

ExploreContainer

Attributes

store The store contains the state of the entire app
and is accessed through the Redux Provider.

Methods

handleClick() This method is called when the user clicks on a
model being displayed on the screen. This
method redirect to a new screen where the
DisplayModelComponent displays the clicked
model.

handleDownloads() This method is called when the user clicks on
the Download button and downloads the
selected models/presentations to the users
device.

Featured

Attributes

store The store contains the state of the entire app
and is accessed through the Redux Provider.

Methods

3.1.2 Redux

15

handleClicks() This method is called when the user clicks on
one of the Models that are being featured. This
method calls the handleClick() method that is
passed down by its parent component,
ExploreComponent.

handleDownload() This method is called when the user clicks on
the Download button on one of the Models that
are being displayed on the featured section.
This method calls the handleDownloads()
method passed down by its parent component,
the ExploreComponent.

ModelComponent

Attributes

image Image of the model.

title The title of the image.

Methods

handleModelClick() This method is called when the user clicks on
the Model. This method calls the method
handleClick() that is passed down by its parent
components, ExploreContainer or
FeaturedComponent.

handleModelDownload() This method is called when the user clicks on
the Download button on the Model. This
method calls the method handleDownload()
that is passed down by its parent components,
ExploreContainer or FeaturedComponent.

Actions

Attributes

Show Loading This type of action is used to show a loading
screen while the app is fetching data from the
database.

Hide Loading This type of action is used to stop displaying
the loading screen.

Clear Session This type of action is used to end the
authenticated session and log the user out.

Set Session This type of action is used to start or restart a

16

session with a new token.

Fetch Profile Pending This type of action is used while we are waiting
for the data for be fetched from the database.

Fetch Profile Success This type of action is used when we have
successfully received the Profile data from the
database.

Fetch Profile Error This type of action is used when the app fails
to retrieve Profile data from the database.

Fetch Model Pending This type of action is used while we are waiting
for the Model to load from the database.

Fetch Model Success This type of action is used when we have
successfully retrieved the Model from the
database.

Fetch Model Error This type of action is used when we have failed
to retrieve the Model from the database.

Set Profile Data This type of action is used to update the profile
data on the redux store and the database.

Set Model Data This type of action is used to update the Model
data in the database.

Set Presentation Data This type of action is used to set the
presentation data on the database.

Methods

AuthenticationReducer

Attributes

Methods

setSession() This method is used to start a session for an
authenticated user. This method is called when
the SetSession action is dispatched.

clearSession() This method is used to end the authentication
session and log the user used. This method is
called when the ClearSession action is
dispatched.

ProfileReducer

17

Attributes

Methods

fetchProfilePending() This method is called when the Fetch Profile
Pending action is dispatched. This method
updates the store with the information that the
app is pending to fetch the profile data.

fetchProfileSuccess() This method is called when the Fetch Profile
Success action is dispatched. This method
updates the store with the retrieved profile
data.

fetchProfileError() This method is called when the Fetch Profile
Error action is dispatched. This method
updates the store with the information that
loading the profile data has failed.

fetchModelPending() This method is called when the Fetch Model
Pending action is dispatched. This method
updates the store with the information that we
are pending to load the model data.

fetchModelSuccess() This method is called when the Fetch Model
Success action is dispatched. This method
updates the store with the retrieved model
data.

fetchModelError() This method is called when the Fetch Model
Error action is dispatched. This method
updated the store with the information that the
loading Model has failed.

SettingsReducer

Attributes

Methods

fetchProfilePending() This method is called when the Fetch Profile
Pending action is dispatched. This method
updates the store with the information that the
app is pending to fetch the profile data.

fetchProfileSuccess() This method is called when the Fetch Profile
Success action is dispatched. This method
updates the store with the retrieved profile
data.

fetchProfileError() This method is called when the Fetch Profile
Error action is dispatched. This method
updates the store with the information that
loading the profile data has failed.

18

setProfileData() This method is called when the Set Profile
Data action is dispatched. This method
updates the store with the new profile data.

PresentationReducer

Attributes

Methods

fetchPresentationPending() This method is called when the Fetch
Presentation Pending action is dispatched.
This method updates the store with the
information that the app is pending to fetch the
presentation data.

fetchPresentationSuccess() This method is called when the Fetch
Presentation Success action is dispatched.
This method updates the store with the
retrieved presentation data.

fetchPresentationError() This method is called when the Fetch
Presentation Error action is dispatched. This
method updates the store with the information
that loading the presentation data has failed.

setPresentationData() This method is called when the Set
Presentation Data action is dispatched. This
method updates the store with the new
presentation data.

Reducers

Attributes

Methods

combineReducers() This method is used to combine all the
reducers into a single reducer.

Redux Store

Attributes

state This attribute contains the state of the entire
app.

3.2 Server

19

Methods

Type Name Description

pkg `server` - -

class ApiClientService Provides access layer for
REST API Clients (Apps).

class LocationService Manages persistent service
layer operations and caching
implementation for Model
objects.

class PostService Manages all service layer
operations for Model Feed

class PostVerbalizer Converts a model post into
text using it’s text features

class TimeSys Time period verbalization,
time-zone computations for
timestamps

class UserAgent Manages all server layer
computations for User

class FeedAgent Provides model sharing
functionality, model feed.

pkg `server.item` - -

class ItemAgent Provides model information,
search queries.

class ItemProvider Holds templates for different
categories of models.

pkg `server.cache` - -

abstract AbstractCache A generic interface for PSR-16
compliance.

class CacheAgent Provides caching service for
common accesses

class UserCache -

class ItemCache -

class PostCache -

20

pkg `server.facebook` - -

class FacebookAuthAgent Provides authentication to
Facebook social network

class FaceboookPostPublisher Publishes a post to facebook
when the user authenticates.

pkg `server.models` - -

class ApiClientDataTransfer Data Transfer Object (blob) for
3d assets

class PostDataTransfer Data Transfer Object (blob) for
Posts

enum UserProfilePrivacy Describes privacy settings of
the users profile.

enum UserPostPrivacy Describes privacy settings of
the posts

class Post Entity class for model post
metadata

class Comment Entity class for comment on a
model post.

class Like Entity class for ‘like’ reaction
on a model post.

class Views Entity class for ‘view’ count on
a model post.

enum SharingSettings Sharing options for a model
post.

enum DownloadSettings Download options for a model
post.

enum GeometryDefFormat Describes 3D data interchange
file formats.

class AssetFormatConverter Converts a 3D data
interchange format to another.

pkg `server.oauth2` - -

class OAuth2Agent OAuth2 authentication
implementation

class InvalidOAuthCliException -

class InvalidOAuthSrvException -

pkg `server.resizer` - -

class GnrImageRes A PHP image resizer that

4. Glossary

5. References
[1] Visual Learning Center by Visme. 2020. 24 Presentation Statistics You Should Know In 2020.

[Online] Available at: <https://visme.co/blog/presentation-statistics/> [Accessed 27 December 2020].

[2] Presentationpanda.com. 2020. Presentation Statistics (Based On Real-World Survey Data!).

[Online] Available at: <https://presentationpanda.com/blog/new-presentation-statistics/> [Accessed

27 December 2020].

[3] What is UML. 2020

[Online] Available at: <https://www.uml.org/what-is-uml.htm> [Accessed 8 February 2021].

21

resizes images upon upload
requests

class ModelSnapSRes Resizes the snapshot of the
model placeholder image

class ProfilePicRes Resizes user profile pictures
uploaded to server by 128x128
px.

pkg `server.twitter` - -

class TwitterAuthenticationAgent Connects Twitter accounts to
the user account to be granted
read, write access.

class TweetPublisherAgent Makes users to post a Tweet
after publishing a model.

pkg `server.modelviewer` - -

class ModelViewerAgent WebGL 1.0 interactive model
viewer

class ModelRenderer Renderer for the scene

class Camera -

class Lights -

class Animate -

class Controls Specifies zoom, pan, scroll
speed for user inputs

https://www.uml.org/what-is-uml.htm

22

